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The estimation of the one-phase structure seminvariants of first rank is carried out in any centrosymmetric 
or non-centrosymmetric space group. Representations theory [Giacovazzo (1977), Acta Cryst. A33, 
933-944] is suitably associated to the joint probability distribution method: the diffraction magnitudes 
belonging to the first and second phasing shells of any seminvariant are exploited in order to give 
probabilistic estimates of the seminvariant cosines. Probabilistic formulae are also derived via the 
method of complementary invariants. 

1. Introduction 

One-phase structure seminvariants have been studied 
by several authors (Hauptman & Karle, 1953; 
Cochran & Woolfson, 1954; Klug, 1958). Their 
probabilistic result in P i  is 

] P+(E2h)~0.5  + 0.5 tanh [ 2 - - ~  ( E ~ -  1) , (1) 

which may be obtained via the joint probability 
distribution function P(E2h,Eh). Unfortunately the 
frequency of failures suggests that it should not be used 
in the early stages of the direct procedures. Joint 
probability distributions more complex than P(E2h,E h) 
were therefore studied in order to obtain more accurate 
estimates of the sign of E2h. For example, P(E2h, Ek, 
Eh+k) was studied by Hauptman & Karle (1953) and 
by Cochran & Woolfson (1955); P(E2h , Eh, El,, Eh .~  
by Cochran (1954) and by Hauptman & Karle (1957); 
P(E2h, Eh, Ek, Eh+k, E2h+K) and P(E2h, E h, Ek, Eh_k, 
E2h_k, Eh+k)by Giacovazzo (1976b) and Giacovazzo 
(1975) respectively. The theory of representations 
(Giacovazzo, 1977a) has given the author new insight 
into probabilistic methods of obtaining accurate 
estimates of the phase invariants or seminvariants. 
This theory is able, for any universal structure invariant 
or structure seminvariant @, to arrange in a general 
way the set of the reflexions in a sequence of subsets, 
each contained in the succeeding one, whose order is 
that of the expected effectiveness (in the statistical 
sense) for the estimation of @. From each subset 
{B },,, which was called a phasing shell of nth order 
for ~, one is able to estimate a collection of structure 
invariants (denoted in the quoted papers as {~,}~) 
whose values differ from ~ by constants which arise 
because of the translational symmetry. 

In order to state the aim of this paper we recall some 
definitions (Giacovazzo, 1977a). 

(a) Let Cp = (Rp, T.), p = 1,. . . ,  m denote the m 
symmetry operators (R; rotation component, Tp trans- 
lation component) of the actual space group and let 
us suppose that @ = ~0H is a one-phase structure 
seminvariant. If at least one phase ~0h and two 
symmetry operators Cp and Cq exist in principle (IEhl 
may or may not be in the measurements) such that 

~//1 : ( ~ n -  ~hRp + ~hRq (2) 

is a universal structure invariant, then ~0n is a structure 
seminvariant of first rank. The collection of the 
invariants (2) obtained when h ranges over reciprocal 
space and Rp, Rq over the set of the rotation matrices 
constitutes the first representation of q~H and is denoted 
by {~}l. The first phasing shell {B} l is defined to be 
the collection of the distinct I E I's associated with any 
~'1 E {~'}r 

(b) If ~0n is a structure seminvariant for which (2) 
cannot be stated, then two phases ~0h and ~0~ and four 
symmetry operators exist in principle (IEhl and I Ell 
may or may not be in the measurements) such that 

~1 = ~ H -  qThRp + (PhRq- (/71R, + qTIR i (3) 

is a universal structure invariant, tPH is then a structure 
seminvariant of second rank. For example, tPeee is a 
structure seminvariant of second rank in all the space 
groups belonging to the symmetry class 222. 

The first aim of this paper is to estimate in any space 
group the one-phase seminvariants of first rank by 
means of their first and second representations. We 
recall in this connexion that the second representation 
of a one-phase structure seminvariant of first rank is 
the collection of the invariants 

which arise when ~'1 varies within {~}1 and k over 
reciprocal space. Any V2 is a special quintet. The 
collection of the distinct basis and cross-magnitudes 



CARMELO GIACOVAZZO 563 

associated with various ~'2's constitutes the second 
phasing shell {B} 2 of tpI+ 

2. The mathematical approach 

The mathematical device of joint probability distribu- 
tion functions will be used. We assume that the 
reciprocal vectors are fixed and that the atomic 
coordinates are the primitive random variables. We 
suppose that a crystal structure consists of N identical 
atoms in the unit cell and that m is the order of the 
space group: t -- N / m  is the number of atoms in the 
.asymmetric unit. In the centrosymmetric space groups 
the characteristic function C(upu2, . . . ,u , )  of the 
multivariate distribution P(E~,. . . ,  E~) is given by 

C(ul, . . . ,u, , )  = exp Sv , 

where 

/]'rs...w (iul)r(iu2)2...(iun)W. S,,= t ~ r!s! w! 
r + s + . . . + w = v  " " • 

(4) 

Krs...w are cumulants of the distribution. After suitable 
change of variables 

1 
P(R p. . ., R,,~ol, . . ., ~0,) - 

(2~r) 2n 

oo co 2n 27t 

x f . . .  f f . . .  f exp{- - i [p ,R ,  c o s ( C , -  ~p,) 
0 0 0 0 

+. . .  + P,, Rn c °s (~n  - -  G,) ] }  

{ 1 2 
x exp [--~(Pl + . . '  + P~)] + ~ t~/2 J 

3v 

x R t R 2 . . . R , p l p 2 . . . p n  d p l . . . d p n d ~ l . . . d ~ n  , (7) 

where 

r$ . . .  w 

s ' = t  rVs  w! 
r + s + . . . + w = v  . . . . .  

x (ip, cos ~,)"(ip2 cos @ s . . .  (ip,, sin ~,,)w, 

and Rj,~0j are the modulus and the phase of the jth 
structure factor respectively. Apart from (7), P ( R p . . . ,  
~0n) will be calculated via the Gram-Charlier expansion 
of (6) (see, in a different context, Giacovazzo, 1977c). 

2,s...w are the standardized cumulants of the distri- 
bution. In accordance with preceding papers (Gia- 
covazzo, 1977b) the density function P(E~,. . . ,En) will 
be calculated via the Fourier transform of (4) or via 
its Gram-Charlier expansion (Klug, 1958) 

S3 S 4 
exp[--~(u2+...+u2)] 1 + t- ~ + t-- T 

S~ S3S4 S5 S~ 
. . . .  ] (5) 

In non-centrosymmetric space groups we denote by 
P(A ~,A 2,.. . ,A,,B~,B2 . . . .  ,B , )  the joint probability 
distribution function of n normalized structure factors: 
Aj and Bj represent the real and imaginary parts 
respectively of the jth factor. The characteristic 
function of the distribution is 

C(upu 2, . . . ,u , , vp . . . , v~)  = exp , (6) 

where uj,vj , j  = 1,...,n, are carrying variables associ- 
ated with Aj and Bj respectively, 

1 ~ r s . . . w  (iu,)r(iu2)S...(iv,)W, 
S ,  = t ~ 2 v/2 rWsV .w[ 

r+s+ . . .+w=v  . . . .  

K r s . . .  W 

~ r s . . . w  m ( r + s + . . . + w ) / 2 "  

3. Algebraic properties of  the one-phase structure 
seminvariants of  first rank 

Let CpH be a structure seminvariant in P i :  then only 
one vector h = 1-1/2 exists for which (2) holds. If the 
symmetry is higher than in P1 more vectors h may 
exist in principle (i.e. some of them may or may not 
be in the measurements) for which (2) holds. We will 
denote by {h} the set of vectors h which satisfy (2) 
and by {Rh} the corresponding set of observable 
magnitudes. We intend to exploit the algebraic proper- 
ties of the system 

h ( R p -  Rq) = n (8) 

which arises from (2), in order to find {h}. The result 
may be useful from a theoretical point of view (it may 
suggest the type of joint probability distribution which 
has to be studied) as well as from a practical point of 
view (it may allow a fast evaluation of f0n). We make 
use of some properties which explicitly are the 
following. 

Property 1. (~h(Rp_Rv) is a structure seminvariant of 
first rank for any space group which presents the 
rotation matrices Rp and R o, whatever h may be. 

Proof. Since 

(Ph(Rp-Rq) -- ~ThRp + (ffhRq 

is a universal structure invariant, its value is a constant 
whatever the origin may be. As 

(PhRp-- ~ThRq = 2 ~ h (  L - -  Tp)  
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is a constant when the algebraic form of the structure 
factor has been fixed, (PhrR - - R "  has the same property. 

As (R z -- Rq) is in ge~er~  a singular matrix, some 
of the algebraic properties of (8) may be described by 
introducing the concept of the reflexive generalized 
inverse of a matrix. 

Definition. If A is a m x n matrix, a n x m matrix A* 
is said to be a reflexive generalized inverse of A 
provided AA*A = A and A*AA* -- A*. 

Property 2. A system of linear equations 

A x - b  (9) 

has a solution if and only if AA*b = b. Furthermore 
if it has a solution then 

x = A*b + ( I -  A*A)z (10) 

where z is an arbitrary vector. 
Property 3. In (9) A = (Rp -- Rq) + and b -- H are 

integral matrix and vectors respectively (R + is the 
transpose of R): furthermore, we are interested only in 
the integral solutions h. We use then a theorem of 
Hurt  & Waid (1970) for diophantine systems, accord- 
ing to which if A and b are integral, (9) has an integral 
solution if and only if 

A*b -- 0(mod 1). (11) 

In that case the general integral solution of  (9) is given 
by (10), where z is an arbitrary integer vector. 

The above-mentioned theorems allows us to derive, 
for a given structure seminvariant of first rank rp~ the 
matrices A m = (Rp -- Rq) + which satisfy (8) and, for 
every Ape, the general integral solution It. We note that 
the number of matrices A m which, for fixed H, make 
(8) consistent may be larger than unity. For example, 
let in P2~2~2~ 

R 1 = I; R 2 = I f ; 
0 

1 
0 
0 

l 0ir ii0!1 R 3 = 1 ; R 4 = 
0 0 

and H = (800). Then all the matrices 

A13, A14, A23, A24, A31, A41, A32, A42 

make (8) consistent. The only independent solutions are 

h = ( 4 k 0 )  and h = ( 4 0 1 )  

obtained by means of Az3 and A14 respectively. 
Obviously k and l are free integers. 

Property 4. Let us state the following identities: 

H = h(Rp--  Rq) = h ( l - -  Rq R~-1)Rp 

= h(l  - R.)Rp = H'Rp, (12) 

where 
R n =  RqR~ ~ and H' = HR~ x. (13) 

(12) tells us that if h, for fixed H, Rp and R o, is a 
solution of (8), then it is also a solution of 

H ' =  h ( I -  Rn) (8') 

and vice versa. From (13) EH, is a reflexion symmetry- 
equivalent to E n. That  allows us to simplify our 
notation: from now on, without any loss of generality, 
we will denote by Eha_R0 the more general expression 
of a one-phase structure seminvariant of first rank. 

Property 5. If h is a solution of (8'), h + k is also 
provided k ' (I  - R,) = 0. 

The proof is trivial. The theorem allows one to 
construct in a simple way {h} from any element h. 

The following property may be useful in space 
groups with symmetry higher than orthorhombic. 

Property 6. If h satisfies h(I -- R,) = H then h' = 
--hRn satisfies h ' ( l  - R~ 1) = H and vice versa. 

Proof. --hR,,(l -- R~ -t) = - - h ( R , -  I ) =  h ( l -  R , ) =  
H, This property tells us that the sets {IEhl} and 
{IE h,I} are symmetry-related (i.e. any element E h is 
symmetry-equivalent to any Eh,). Therefore (8') needs 
to be exploited only for one between R,  and R~ 1. 

In P3, for example, let 

0 [ 0 ] i  1 0 
R ~ = I ;  R2.= 1 i 0 ; R 3 =  !~ 0 0 ; 

0 0 1 0 1 

where  R 2 = R~ "1. 
All the seminvariants are of first rank and they 

satisfy the condition (H - K, L) = 0 mod(3,0). Fixing 
H = (470) we obtain h = (51/) from h(l - R2) = H, 
and h = ( i6 l )  from h(l - R 3) = H, in accordance 
with the fixed property. 

4. The expected sign of  E H = E h ( I _ R ~ )  from its first 
representation in the eentrosymmetrlc space groups 

The idea of representations suggests the study of the 
joint probability distribution P(E~{Rh}) from which 
the conditional probability P(q~rtlR~_{Rh}) may in 
principle be derived. For  example, in P1 (8') is satisfied 
only if 

H --= 0 mod(2,2,2). 

Then (10) gives {h} = h = HI2. The distribution 
P(E2h,Eh) is therefore suggested which, according to 
Cochran & Woolfson (1955), leads to (1). 

In centrosymmetric space groups with crystal 
symmetry higher than P1 one obtains (Naya,  Nitta 
& Oda, 1964; Giacovazzo, 1974) via the G r a m -  
Charlier expansion of (4), 

P+(EH) ~-- 0.5 + 0.5 tanh IEHI 

•'• W,,hj(E]~ j -  1)(--1) 2hiT. ],  (14) x 
n j / 
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where: (a) the first summation, in accordance with (11), 
goes within the set of matrices Rn for which (I - R+) * 
I-I -- 0(mod 1). Only the matrices Rn must be con- 
sidered which give independent h solutions. (b) For 
each R, the second summation is over the general 
integral solution given by (10). (c) WHh ,, whose 
value depends on the statistical nature of the 'reflexions, 
is a weight which is defined in Appendix A. 

The Fourier transform of the exponential form of the 
characteristic function gives in P1 (see Appendix B) 

where 

P+(EH)~ po+ (15) po+ + po_' 

po_+ = (f+)-,/2 exp(_R~/2f+), (16) 

f+= 1 + Rn/v/N. 
(15) may usefully be compared with (1). From the 
power series (1 + x) q ~_ 1 + qx + ..., (16) becomes 

(1 -T- R ~ 2 v / N )  exp[--R~(l T- Rn/x/U)/2]. 
Putting 1 + x ~_ exp(_+x) (15) reduces to 

P + (Eh) 
exp[Rn(R~ -- 1)/2v/N] 

exp [Rn(R~-  1)/2v/N] + exp[ -Rn(R~, -  1)/2v/N] 

which coincides with (1). A numerical comparison 
between (1) and (15)is shown in Fig. 1 which shows 
that in many cases (1) is a useful approximation of 
(15). If the actual space group presents symmetry 
higher than P i more h exist in principle for a given H. 
Denoting for every hj 

P~,n = (finn) -i/2 exp(--R ~n/2fj~n), 

f j + =  1 + .... W H ' h ' R H ( - - 1 ) 2 h j T " '  

v/U 

the sign probability for EH is given by 

P+(EH) = HPf'n 
H/'fj,, + H P)Sj. n" (17) 

(17) may be compared with (14) in the same way as 
(15) with (1). 

' i t " 
l/I 

1/, I/" 

y '"' l'.O ' 214 ' ~ h, 

Fig. 1. The probability densities (1) (---) and (15) ( ) as a 
function ofR h for fixed R2h = 3"0 and N = 50. 

5. The estimation of (~H = (f lh( l - -Rn) from its first 
representation in non-eentrosymmetric space groups 

Using the Gram-Charlier expansion of (6) we obtain 
for h • {h}, 

1 
P(~0HIRn, Rh)_~ ~ exp[G COS(~0H--Ah,n)], (18) 

where 

G - -  W H , h R H ( R  ~ - D/x/N, 
L - -  2zdo(G), Ah, n= 2~zhTn, 

and WH, h is a statistical weight justified in Appendix 
C. (18) holds when both EH and E h are non-centro- 
symmetric reflexions. For brevity its derivation is not 
described. (18) is a unimodal distribution which has 
its maximum at ¢n = Ah,n if G > 0, at (fill = Ah,n + 7t 
if G < 0. If G = 0 (18) always equals ½n. Furthermore, 

<COS (OH> = COS Ah, nlt(G)/Io(G), (19) 

var(cos ~n) = 1 + cos2 2Ah, n ,_[1 I-~jI2(G) ] 

I,(G) 
-- GIo(G) cos 2Ahn, (20) 

<sin  ~H> = sin Ah,nll(G)/Io(G), (21) 

var sin, = (1 cos2  n)[1 
2 

II(G) 
+ ~ cos 2Ah, n. (22) 

GIo(G) 

The value of Ah, n may play a critical role in assigning 
the average and the variance values. In particular, 
we emphasize that the variance of cos (on is not always 
smaller than that of sin (OH (e.g. if dh, n = n/4). Further- 
more, the variance of tPH depends on I (71 : 

7~ 2 °° [I2p(lG') ] 
var(~H) = ] + [Io(IGI)] -1 ~ p2 

lp  

-- 4[Io(IGI)] -i  

If more R's belonging to the 
(OH are known then 

P((OHIRI-b  { R h } )  

oo 

op [ (2p + ]-~.]" (23) 

first phasing shell of 

~exp [ ~ ' y  Gjcos((PH-Aj,.)]  d(OH 
--n j 

1 
= L- 7 exp[A cos(tpn-- 8)], (24) 
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where 

Gj= Wn,hjRn(R~j-  1),v/N, 

Aj,n= 2zchj T., 

A =  [ ( ~ ' ~  a j c o s A j , ~ ) 2 +  ( ~  ~ a j s inAj , . ) 2 ]  1,2, 

y '  y GjsinAj, .  

tan 0~_ " J 
~ '  ~. Gj COS Aj, n 
n j 

L' = 2rd0(A). 

The same considerations described for (14) hold for the 
summations Y/and  ~-a" 

(24) is a unimodal distribution which has its maxi- 
mum at ~On = 0. The variance of ~on is given by (23) 
if I GI is replaced by A. The expected cosine and sine 
values of ~on and their variances according to (24) are 
again given by (19)--(22) irA replaces G and 0 replaces 
Ah,n. We note that (24) is formally different from (18) 
because always A _ 0, whereas G may assume positive 
and negative values. However (25) and (19) give 
equivalent results when only one magnitude in {R,} is 
known. In fact 0 =/Iy, n if Gj > O, 0 = A j,,, + zt if G < 0. 
If the exponential form of (6) is directly used we obtain 

P(~pnlRH, Rh) -- 2rJo(q/d ) exp t-d- ] 

x [1 + a COS(~OH-- dh, n)] -1 

X exp{--R~[1 + a cos(~n--  Ah,n)]-l}, 

(25) 

IEhl , 

..... j hl oo 

~ ::~---IEhl = 1.o 

l - ~-~'~ (I)1.1- Ah.  n 
20 60 1OO 140 180 

Degrees  

Fig. 2. The distributions (25) ( ) and (18) ( - - - )  for the 
shown values of  R h. 

where 
a = WH,hR H/v/N, q = R H R ~ / ~ N ,  

d = 1 - R~/N,  Ah, n = 27rhT.. 

The derivation of (25) is described in Appendix C. 
When more IEl's belonging to the first phasing shell 

of ~0n are known, the conditional probability of ~0n 
may be calculated by numerical techniques by means of 

where 

H Qj.n 

p(~onlRn,{Rh}) ~_ j,n , (26) 

Qj,n = cj-,xn exp(-RZ/cj,.), 

Rn  
cj,,, = 1 + Wn,hj -Q-N c o s ( C a -  Aj,,,). 

The average values of Icnl, the most probable value 
of ICPHI (l~0nlmode), the average values of cos~on, 
sin Cn and their variances are also readily calculated 
from (26) by numerical techniques. We compare now 
(25) with (18): the comparison of (26)with (24)follows 
from there. In Fig. 2 the probability values according to 
(18) and (25) are shown for some values of Rh when 
N = 50 and En  = 3.0. In Table 1 some expected 
cosines are calculated. We note: ( a ) the  probability 
densities and the expected cosine values are signifi- 
cantly different only when Rn and Rh are large. 
Under these conditions (18) seems to overestimate the 
expected value of cos(~0n-  Ah,n). (b) When R h ---- 1 
(18) is a straight line whereas (25) is a rather flat curve 
with mode at ~0H = Ah,,~ + 90 °. 

We conclude that no large errors will arise in the 
direct procedures for phase determination if (18) is used 
instead of (25) [or (24) instead of (26)1, thus saving 
computing time. 

6. The expected signs of the centrosymmetric one- 
phase seminvariants in non-eentrosymmetrie space 

groups from the first representation 

All one-phase seminvariants of first rank are centro- 
symmetric reflexions in up to orthorhombic space 
groups. Thus, it should be useful to calculate suitable 
sign probabilities for cases in which En is a centrosym- 
metric reflexion while Eh is not. If the Gram-Charlier 
expansion of (6) is used, (14) holds if cos A j, n replaces 

Table 1. Values of  (cos(~0n- Ah.n)) according to (18) and (26)for  some values of  Rh when R . =  3.0 and 
N =  50 

R h 2-6 1-60 1-20 1-00 0.6  0-2 0-0 
(cos(~0 H -- Ah..))(~s ) 0"759 0 .320  0.101 0 .0  --0" 144 - -0-210 - -0 .217 
(COS(tPH -- Ah,.))(25 ) 0" 700 0 .337 0.23 0 .022  --0" 134 --0.213 --0.223 
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(--1) 2h:T". If the exponential form of (6) is directly used 
when only a magnitude Rh is known we have for 
E n the sign probability 

P + -  po 
po + po, (27) 

where 

RH n) -1 po+~ 1 + COSAh, 
- - 2 v / u  

f- / 
×exp | - R ~  /1+  RH cos . 2 ~  Z~ h 'n)-1]  

If more R h belonging to the first phasing shell of tPH 
are known then 

p+ = IIP+,, 
(28) rI . + rIe 2 

where 

p-+ ( RH ) -' 
j,n = 1 "4- WH, hy 2 ~  COS /]j,n 

X + Rrl cos A:,,) -l] exp [--R2hj(I_ WH,hj~-~-~ • 

(27) and (28) may be usefully compared with (15) and 
(17). 

7. The expected sign of E2h in Pi from its second 
representation 

In accordance with § I the second representation of 
E2h in P[  is the collection of the special quintet in- 
variants 

9"2 = (ff2h -- 2tPh + tPk -- tPk; (29) 

k is a free vector which varies throughout reciprocal 
space. The second phasing shell is then 

{B} 2 = (REh , Rh, R k, Rh+k,  Rh_k,  REh+k, REh-k), 
(30) 

which suggests the study of the joint probability 
distribution 

P(gEh, Eh,  Ek,  Eh+k,  g h _  k, gEh+k, E2h_k). (31) 

In order to keep the notation of this paragraph similar 
to that in the following paragraphs where we deal with 
symmetries higher than P1, we denote 

E1 = E2h; E2 : Eh;  E3 = Ek;  E4,1 = Eh+k;  

E4,2 = E h _ k ;  Es, 1 : E 2 h + k ,  E 5 , 2 - - E 2 h _  k. 

From the Gram-Charlier expansion of the character- 
istic function of (31) we obtain 

P+(E2h) ~_ 0.5 + 0.5 tanh 2v/N t 2 + , (32) 

567 

where 

A k = [28283(84, l 85,1 + 84,2 85, 2 + c4, 1 84,2) 

+ °03(84, 1 85, 1 -t- 84, 2 85, 2 "-I- 84, I 84, 9 

-- 0"583(84, 1 + 84 ,9 - -  0"5(84,1 85, 1 -1- 84,2 85,2)]/N , 
7 

B k ~_ 1 + Qk/2N--~ ~ H4(Ei) , 
li 

Qk ~;~81H4(E 2) + 8183(8L 1 + 8L2)+  8283(84, 1 + 84,2) 

+ 82(84, 1 85, 1 + 84, 2 85, 9 + 81 84, l 84, 2, 

e i = E~ -- 1, 

H4(E i) = E: -- 6E~ + 3. 

Some properties of (32) deserve to be stressed. The 
first two terms in A R arise from the contribution of 
the terms denoted in (5) by S~/6t 9/2 and $3S4/l 7/2. 
They give concordant information if I Ehl > 1, disagree- 
ment if IEhl < 1. Their sum is (2E 2 -- 1)83(84, i E5,1 + 
84, 2 85, 2 + 84, ~ 84, 2) which, unlike preceding formulae 
[e.g. Giacovazzo, 1976b, equation (14)], is able in 
principle to give information about the sign of E2h 
even when IEhl ---- 1. Less favourable estimations 
are expected when IEhl < 1. 

As k is a free vector in (29) or (30), in addition to 
(31) we have studied the joint probability distribution 

P(E2h, Eh, Ek,, Eh+ k,, ' . - ,  E2h_k,, 

E k 2 . . . ,  E2h_k¢ Ek3,.. .).  

The final sign probability for E2h may still be described 
by means of (32) provided 

A = Z 'Ak,  B = ~ ' B  k (33) 

replace A k and Bk. The prime to the summations in 
(33) warns the reader that precautions have to be taken 
in order to avoid duplication in the contributions. 

8. The expected sign of E H = Eh(t_R) in any centro- 
symmetric space group from its secondrepresentation 

In a centrosymmetric space group of order m for fixed 
h E {h} and k one may construct the set of special 
quintets 

I//2 = (f i l l -  (Ph + (ffhR. -- (PkRj + (ffkR? j -- 1,..., m/2. 
(34) 

In (34) Rj varies over the subset of matrices not 
related by the centre of symmetry. The second repre- 
sentation of Eh is then the collection of quintets (34) 
obtained when h varies over {h} and k over the 
asymmetric region of reciprocal space. The cross- 
magnitudes of any 9'2 are 

RH+_kRj, Rh+_kRflRhR,+kap J-- 1,...,m/2. 
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As RhR +kR is symmetry-equivalent to Rh+kR j, where 
Rj = R]-R~ f, the second phasing shell of E H reduces 
to 

{B} 2 = (RH, Rh, Rk, Rh+kR? RH+kR ,, j = 1,...,m). 
(35) 

That suggests the study of the distribution 

P(EH, Eh, Ek, Eh + kR,, • • ", Eh + kR? EH + kRt,..., EH + kR). 

In order to describe in a simple way our results 
whatever the space group may be we denote 

E~=EH;  E 2 = E h ;  E 3 = E k ;  

E4, J = Eh+kRj; Es.j-- EH+kR I 

We obtain 

P+(E.) ~_ o.5 

I-IEll 
+0"5 tanh [ 2 ~  (e 2 

where 

+ Ah'k'~Bh, k] (--l)2hT" ] , (36) 

Ah, k=  [(2R2--1)t~3( Z 84. i 85.1 
RI=R j 

Rj+ RtR . =0 

Rj= Ria  . l j  
R I= RsR n 

Rj=Rt 
Rj+ R~R.=0 

~4 , j  

Bl~k: 1 ~H4(Ej)+ Qhok/2g 
m 

Qh, k = el 83 ~ t5,j + 81 Z 84, i84,j 
l j  Rj = R~R. 

R~= RjRn 

+ /~283 ~ 84.j+ 62 Z ~'4,1~'5.j+¼~'IH4(E9 • 
l j  Rj=R, 

R s + R:R n = 0 

The derivation of (36) is not straightforward and 
requires an application of space-group algebra to the 
joint probability distribution method. In order to justify 
the constraints in the summations in (36) some elements 
of this algebra are described in Appendix D. In this 
connexion we note: (a) the condition R i = R j R  n 
coincides with Rj = RiR . if R, corresponds to a 
symmetry operator of order two. In fact multiplying 
by R~ -~ both sides of R t = R j R  n we obtain RiR~ -1 = 
RtR n = Rj. (b) If R n = --I the condition Rj + RiR n = 0 
coincides with Rl = Ry. 

Since h under certain conditions (h E {h}) and k 

are free vectors in (35), the more complex joint proba- 
bility distribution 

P(En, {Eh}, {Ek}, {Eh+kn,}, {EH+kR,}, J =  1 ..... m) 
(37) 

has to be studied. In (37) {Eh} is the set of structure 
factors whose indices belong to {h}, {Ek} is any chosen 
set in the asymmetric region of reciprocal space, 
{Eh+kRj} and {EH+kR J} are sets obtainable from the 
specified conditions on h and k. We have found that 
the final sign probability for EH may be still described 
by means of (36) provided 

~-~' Ah, k and ~ ' B h ,  k (38) 
h , k  h , k  

replace Ah, k and Bh, k. The prime to the summations in 
(38) warns the reader that precautions have to be taken 
in order to avoid duplication in the contributions. 

9. The expected value of tpH = (Ph(l-Rn) in non-eentro- 
symmetric space groups from its second representation 

The second phasing shell of EH is 

18}2 
= (RH, Rh, Rk, Rh+kR; Ra-~ j ,  RH+kR; j = 1,...,m), 

(39) 

where h is a free vector under the condition h E {h} 
and k is any vector in the asymmetric region of 
reciprocal space. If we introduce the fictitious (not 

belonging to the space group) symmetry operators 
Era+ j = ( - - R j , - - T j ) , j  = 1,...,m, (39) may be written as 

{B} 2 = (Rib Rh, Rk, Rh+kR? RH+kR?J = 1,...,m'), 

where m' = 2m. 
We may then use the compact notation of § 8 and 

obtain finally 
II(G) 

(cos qTH) ~ I.(G)' (40) 

where 

IEil ( Ah,k / 
G - ~/N 82 + Bh,k ] COS 27rhT n. 

Ah, k and Bh, k are the same as in § 8. The extension to 
any number of h and k vectors is straightforward. 

10. The estimation of  (ph(l_~t.) v/a the method of 
complementary invadants 

A branch of the representations method is the method 
of complementary invariants. To the structure semin- 
variant • which one wishes to estimate, one or more 
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structure invariants or seminvariants O:,O~,..., Oq can 
be associated such that 

O' = • + O: + O~ +... + Oq 

is a structure invariant. If O',Oi,..., Oq are estimated, 
• is in consequence evaluated. The method has been 
successfully applied in P l  by Giacovazzo (1975) to 
quartet complementary invariants. Sheldrick (1976) 
extended in an empirical way the idea to all the space 
groups. We wish to give here general probabilistic 
formulae valid in any space group when the comple- 
mentary invariants are given by 

~'  = (~h(l--R n) -- ~h -- (ffk + ~hRn+k' (41) 

(/Th(l_Rn) will be estimated from all the quartets which 
arise when k varies over reciprocal space on condition 
that triplets tph + ~k -- tPhR.+k are known. As one of 
the cross-vectors of (41) coincides with a basis vector, 
quartets such as ~'  cannot be estimated by formulae 
given by Hauptman (1975) for general quartets. Special 
formulae have already been given by Giacovazzo 
(1975) via the Gram-Charlier expansion of the 
characteristic function of the six-term distribution 

P[Eh(I_R) Eh, Ek, EhR.+k, Eh(I_R~)_I~ Eh+k]. (42) 

We give in Appendix E some conditional distributions 
derived from (42) via the exponential form of its 
characteristic function. 

For brevity, formulae in Appendix E and in this 
paragraph will not be proved. We obtain in centro- 
symmetric space groups from (42) 

1 
P+[Eh(,_R. )] _~a + exp _+ 2~Rh(I_R~)R~t(--1)2hT" 

¥ ~ Rh(I-R.)EhEkE~. +k 

× (cosh L Ix-+ Rh(l--Rn)--klcN J cosh kl Y -+'Rh+¢N k ,.)1 

(43) 
where 

X + = [Rh(I_R~)E k -F EhEhR.+k] , 

y+ = [Rh(I_R.)EhR.+ k -- EhEk], 

a + = [  1 _+ Rh(I_R.)(__I)2hT.]v/N -1/2 

(43) gives the probability that the sign of Eh(I_R. ) is 
positive when the signs of the triplet EhREkEhR.+k 
and all the magnitudes in (42) are known. 

If we use (E.5), (43) may be written 

1 2 P+[Eh(I_R, )] _~ exp _ 2 ~ R h ( I - R ~ ) ( R h -  1)(--1)2hT" 

¥ ~ Rh(i-R.)RhRkRhs.+k 

(44) 

If k varies over the region of reciprocal space for which 
EhREkEhR.+k are large, then in (43) and (44) 
EhEkEhR.+k may be replaced by (--1)2h'r"RhRk 
RhR.+k and X -+, Y-+ become 

[R h(l_R~)Rk(--1) 2hT~ ± R h RhR.+ k] 

and 
[Rh(l-Rn)RhRn+k ----- RhRk(--1) 2hTn] 

respectively. 
Series expansion of (44) may be readily applied when 

more than one quartet is used in order to estimate the 
sign probability of Eh(I_R. ). We obtain 

[R h(l_R~)/ 2 
P+[Eh(l-S~] ~ 0"5 + 0"5 tanh [ ~ ~ oh+ v/N 

where 

h.k (__l)2hT. 

h,k / 

(45) 

Ah, k "~ RhRkRhRn+k[Eh(l_Rn)_ k + 8h+k], 

Bh. k ~" {Eh(l_Rn)[~k 8h(l_Rn)_k-t- /~hRn+kSh+k] 

q- /~h[Ek Eh+ k -t- /~hRn+k/~h(l_Rn)_ k] }/2N. 

If (/Th(l_S~ is a non-centrosymmetric phase, I1(2G)/ 
Io(G) is the expected value of cos ~h(l_S,t) ~ where G 
is the argument of the hyperbolic tangent in (45). 

I I. Conclusions 

A theory has been described which is able to estimate 
the value of a one-phase structure seminvariant of first 
rank given the magnitudes in the first and second 
phasing shells. When only magnitudes in the first 
phasing shells are known probabilistic formulae are 
given which formally differ from the hyperbolic 
tangent formulation obtained by other authors and 
reduce to them if suitable approximations are intro- 
duced. New formulae are also given via the method 
of complementary invariants. The first applications of 
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the theory proved satisfactory and are described by 
Burla, Polidori, Nunzi & Giacovazzo (1978). 

This work was supported by the Consiglio Nazionale 
delle Ricerche (grant No. 77.00968.05.115.4593). 

APPENDIX A 

In this and the following appendices we denote by 
the trigonometric form of the structure factor in the 
actual space group, by ~, and r/the real and imaginary 
parts of ~ in non-centrosymmetric space groups. Since 

N ] 1/2 
r Eh = Fh/¢ph / y ff(h) 
L I j  J 

we denote 

~'(h) = ~(h)/x/ph; gt'(h) = ~(h)/v/Ph; 

r/'(h) = ~/(h)/v/Ph , 

where Ph is the statistical weight of the reflexion h. 
Denoting H = h(I - R,), in accordance with pre- 

ceding papers (Giacovazzo, 1974, 1976a) the weight 
WH,h involved in (14) and (17) is given by 

(~(H)~2(h)) (~'(H)~'2(h)) 
WH, h = 

mPh x/PH m 

= (lp, q ~ ¢ [h ( I -  R. + Rq-- Rp Rq)] 

x exp 2n'/h(Tq -- Rp Tq-- Tp))/mPh v/PH. (A.1) 

The value of (A.1) is different from zero for all Rp, 
Rq operators for which 

h(l -- R n + Rq -- Rp Rq) = 0. (A.2) 

For example, whatever h and H may be, (A.2) is 
satisfied at least when 

(a) Rq=-- l ,  R p = R . ;  

(b) Rq = R n, Rp = R n  1. 

If h is a systematically absent reflexion, then ~(h) = 0 
and Wa,h = 0. Numerical values of WH,h for different 
parity classes are shown in Table 2 for the space group 
Pmmm. 

APPENDIX B 

D e n o t i n g  E H = E2h , we calculate in P i  P ( E H , E h )  
directly via the exponential form of the characteristic 
function (4): 

1 -oo +oo [____~( 

P(EH,Eh) ~ (270 2 f f exp[ uh + u~,) 
- -  ~2~'~, - -  o C ~  

( )] --i EHuH + Eh Uh + 2 ~  UHU~ dUHdUh. 

(B.1) 

The integration of (B.1) with respect to Un is readily 
carried out: 

P ~_ (270 -3/2 exp( -Eh /2 )  

] × . -  + u~-- iEhU h duh .  
--0(3 

(B.2) 

The integration of (B.2) with respect to Uh is carried 
out by means of the integral relation 

exp(_pEx 2 + qx) dx = exp - -  (.p > 0). 
-oo P 

Then 

1 f_,/2 exp(. E~ E~I (B.3) 
P ~ 2---n 2 2 f /  

where 
f = 1 + EH/x/N. 

From (B.3) (15) is easily found. 
Let us now calculate in any centrosymmetric space 

group with crystal symmetry higher than P1 the 
multivariate probability P(En, {Eh }). We obtain 

f P(Erb{Eh}) -- (2n),+ 1 ... exp uh 
--CO --t'~ 

+ ~'~p h U~)-- i[Enurl+ ~ '~p h EhUh 

H,h UnU~(_l)2hL + . . . .  (B.4) 

where n is the number of the distinct h vectors belong- 
ing to the first phasing shell of EH. The same 

Table 2. Numerical values of W n.h for different parity classes for space group Pmmm 

H 2h 2k 2l 2h 0 2l 2h 0 2l 2h 0 0 2h 0 0 2h 0 0 
h hkt hkt  hOt hkt hk0 h00 
(~(H)~2(h)) 8 16 32 32 64 128 
(~'(H)~'2(h)) 8 16/72 16/72 16 16 16 
WH, h I ¢2 x/2 2 2 2 
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considerations made for (14) hold for the symbols 
Y' ,  ~h  and WH,h. After integration we obtain 

1 / 
P = ~ - ~  exp(-E~/2)  (2--~- 2 exp - -  f ~ - I  , 

where (B.5) 

WH,hEH(-- 1) 2hT , 
f h = l +  v/N 

(17) is easily derived from (B.5). 

APPENDIX C 

Denoting H = h(l -- R~) and An, Ah, Bn, Bh the real 
and imaginary parts of the normalized structure factors 
E n  and Eh, in accordance with (6) their characteristic 
function is 

K2°°° uh K°°°2 v~ 
C(UH, Uh,Vn,Vh) = exp -- 2---m - - ' " - -  2----m- 

i /KI2oo KlO2O -~\-~m UHU~, + 2m unv~,+... 
Kool_ v.uQ] . (C.1) 

+ 2m 

This expression is able to take into account both the 
incidental centrosymmetric nature of EH or E h and 
their statistical nature. We remember in this connexion 
that 

K2ooo = m2ooo = ( I//h 2 ) . . . .  

K,2oo = (q/h ~ 2 ) , . . .  

Furthermore, if Eh is a centrosymmetric reflexion, 

(q/'2(h)) = m or  (rf2(h)) = m 

whatever its statistical weight may be. For a non- 
centrosymmetric reflexion always 

(q/'2(h)) = (t/'2(h)) = m/2. 

By a change of variable 

U H : P H C O S  q/n, V H : p H S i n  q /n , . . .  

A H = R H COS ~0n, Be  = R I~ sin q~n,... 

we obtain, in the case that both EH and Eh are non- 
centrosymmetric reflexions, 

2n 2n oo oO 
1 

0 0 0 0 

× exp {-¼(ph + p2h)--i[RapnCOS(~O H-  q/H) 

+ RhPh COS(qTh -- q/h) 

W H h  2 V ' v  ] }  -- 8/~rPHPh COS(q/H-- A) dpHdphdq/Hdq/h, 
(C.2) 

where A = 2nhT, and Wn,h is a statistical weight 
analogous to that derived for centrosymmetric space 
groups in Appendix A. The integration of (C.2) may 
be performed by formulae such as 

oo 27t 

1 / / exp(_p2t 2 iatcos~o) tdt&o 
2re 

o o 

1 ( a _ ~ 2 )  
2P 2 exp 

We obtain 

RHRh 1 
P( (on, q~h,R n,R h) -- 

7~ 2 

x exp [--Rh--R~, /(1 

1 + Wrt'hRrlCOS(fOrt--A ) 

WH'hRI-lV/N COS(~0H- A))]. 

(C.3) 

In order to calculate P(~0Hl~Oh,Rrt, Rh) we need to 
estimate 

I = 1 + a cos(0n--  A) 

x e x p  - l + a c o s ( 0 n - - A )  d~0~ 

where a = W~hR~v/N and b = R~. By a change of 
variable x = 1/[ 1 + a cos(0n - A)I we obtain 

d 
exp(-bx)  

I =  2 f [(a2 - 1 ~  ~ + ~ x - -  1] '/2 dx, 
c 

where c = 1/(1 + a) and d = 1/(1 - a). 
c and d are real roots of (a  2 --  1)X 2 + 2X -- 1 = 0 

in the same way as 0 and 2 are roots of y(y -- 2) = 0 
in the definite integral 

2 

f exp(--py) [y(2 -- y)l 1/2 dy = n exp(-P)Io(P) (p > 0). 
0 

This suggests the further transformation 

x = ½[(d-  e)y + 2el, 

which leads us to 

2 
I -  (1 - a2) u2 exp[--b/(1 + a)] 

exp[-bay/(1 - a2)] 
× [y(2 -- y)]1/2 dy 

o 
27~ 

- (1 -- a2) 1/2 exp[-b/(1 - aE)]Io[ba/(1 - a2)]. 
(C.4) 
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Since 

P(~0HI ~0h,R H,R h) 

[1 + a  COS(~0H-- A)] -1 exp{-b/[1 + a COS(~0H-- A)]} 

I 

(25) is proved. 
Let us now define the form of the distribution for 

cases in which EH is a centrosymmetric reflexion while 
Eh is not. Then (C.2) becomes 

+oo 0o 27r 
1 

P ( E ~ f p h , R h ) ~  (2703 R h  f f f fin 
-co 0 0 

--'~U H -- i HUH + Rhff h COS(Ifh -- (Oh) 

+ 8v/N HP~ COS(~0H-- ,4) dUHdPhd~0h. (C.5) 

The calculation of (C.5) may be made by mathematical 
techniques similar to that previously described and 
leads to (27). 

A P P E N D I X  D 

In § 8 several multivariate distributions are studied 
which require calculation of standardized cumulants of 
low order. The algebraic form of the conclusive 
probabilistic formulae depends on the type of non- 
vanishing cumulants which can be found. The estima- 
tion of all the cumulants used is too long to be 
described; however, we present an example. We deal 
here only with cumulants of order 1/~/N. 

(a) ( ~ [ h ( I -  Rn) + kRj]~[--h(l--  Rn)]~(--k)) 

m 
= E (~[H(I--  R,,) + k(Rj--  R,)](--1)2(HT,+k*.)). 

v, O= I 
(D.1) 

(D.1) does not vanish for all R~ and R~ for which 

H(I -- R )  = 0, Rj- R,  = 0. (D.2) 

Condition (D.2) is satisfied by more than one pair of 
matrices R~, R,  if H and k are special vectors (i.e. 
their statistical weight is larger than unity). Drawing 
of special-vector covariances in a direct procedure 
which uses the second representation of a one-phase 
seminvariant would be too expensive. Therefore, for 
the sake of brevity we limit ourselves to consider that 
(D.2) is satisfied only when R~ = I and R,  = Rj. In 
conclusion (D. 1) does not vanish whatever j may be 
and its value equals m(--1)2krL 

(b) ( ~ [ h ( l -  Rn)]~[--(h + kRi)]~[h + kRj]) 
m 

= ~ (~[h(I - -  R n -  R v + R~) + k(--RiR~, + RjR,)]  
v,~=l 

× (__ 1)2[--(h+ kS~Tv+ (h+ kR)T,]). (D.3) 

(D.3) does not vanish when (1) R v =* I, R~ = R,, 
R t = RjR,;  (2) R o = --I, R~ = - - S  n, Rj = SiRn. 
(1) and (2) coincide if R n corresponds to a symmetry 
operator of order two. Since RjT~ = Ti -- Tj when 
RIR n = Ri in both the cases the value of (D.3) equals 
m ( _  1)2[h+ k(Ti-T)]. 

(c) (~(--h)~(--k)~(h + kRj) 

m 
= Z (~[h(l--  R )  + k(Rj--  R~)] 

v, 0----1 

× exp 27ff(--hTv- kT,)). (D.4) 

(D.4) does not vanish when R = 1 and R,  = Rj. 
In other words (D.2) does not vanish whateverj may be 
and its value equals m(--1)2kT~ 

(d) ( ~ [ h ( l -  R n) + kRj]~(h + kRi)~(--h)) 

m 

= Z (~[h(I--  R n + R~-- R,)  + k(Rj + RiRv)] 
v,*=l 

× exp 27ff[--hT, + (h + kRi)T~]). (D.5) 

(D.5) does not vanish when (1) R,  = 1, R = R~, 
Rj + R i R  n = 0; (2) S = - - I ,  R,  = - - R n ,  R i =  Rj. 
(1) and (2) coincide if R~ = --I. In conclusion (D.5) 
does not vanish when R.. = Rj or Rj + R i R~ = 0 and 
its value equals m ( -  1) 2ha'.. 

APPENDIX E 

Retaining terms up to 1IN order we obtain in 
centrosymmetric space groups 

P(ElrE2~3~E4~E5,E 6) 

(270 31 { ~ 1 V ~" ----- aexp ~ Ej 2 + --~r[~lE2(--1)  2hT. 
=1 

+ E1E3E 5 + E1E4E 6 + E2E3E4(--1) 2hx. 

1 
+ E2E3E 6 + E2E4Es]--~-~ [E2EsEs + E2E4E6 

+ E3E2E5 + E2E4E6](--1) 2hT. 

1 
-- ~ [El E 2 E4 Es(-- 1) 2hT~ + E 1 E 2 E 3 E6(-- 1) 2hT~ 

+ E1E2EsE6 + E3E4EsE 6 + 2EIE2E3E4] ! ,  [E. 1) 
J 
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where 

E l = Eh(I_R.), E2 = Eh; E 3 = Ek,  E4 = EhR.+k, 

E5 = Eh(l-R.)-k, E6 = Eh+k, (E.2) 

a = 
El ] --I/2 1 + V/N (--1) 2hT" 

From (E.1) the probability that the sign of EIE2E3E 4 
is positive given six magnitudes is 

p+ 
-~ (E.3) P-~Q -- p+ + p - '  

where 

"-+ : exp(¥2B)cosh {R,Z~] {R6Z{] 
\ V/N ] cosh a +, lv/N] 

(E.4) 

B=RIR2R3R4/N, Z~=(RIR3 +_R2R4), 

Z~ = (R2R 3 +__ RfR4)  

[ ( 2 7  N RER3R4t ] a +=fl+exp 1 R IR22+ ~ ](--1)2hX" 

[(1 
+ ,8- exp -- 2 ~  R1 R2 R2R3R4 ] (--1)2hT"], 

[( 1 R2R3R4] ] 
a -  = fl+ exp 2 ~  R I R ~ -V/--- ~-  ] (-- 1) 2hT. 

[(1 ] 
+ fl-- exp 2v/NRIR2z+ ~-~ ] (--1)2hT. 

RI ] -1/2 
/~ = 1 + - -  (--1) 2hT" 

-v/N 

From the approximation 

[ R~ ]-v2 
1 + (--1) 2hT~ 

(E.4) becomes 

R1 ( _  1)2hT. ~- 1 -T- ~--~  

--~exp IT- R~ -- t. 2 ~  (-- 1)2hT"] 

(E.5) 

(R 5 R~] [R 6 Z~) 
P-+ ~ exp(¥2B) cosh \ - - ~ ]  cosh ~x,/N ] cosh(y-+), 

(E.6) 
where 

7-+ 1 [ RS(R22-1) ] 
= +R2R3R 4 . 

v/N 2 - 
(E.7) 

In order to understand what (E.6) means we expand 
it in series and obtain 

PQQ~O'5 + O'5 tanh ( RIR2R3R4 A N  I + B )  (E.8), 

where A = e 5 + e6 + e2/2, 

B = 1 + [el(e 3 e 5 + e 4 e6) + t~2(t 3/~4 ÷ t3 e6 ÷ t~4 es)]/2N. 
(E.8) tells us that if e 2 is large enough the quartet is 
expected to be positive no matter how small the 
cross-magnitudes R 5 and R 6 are. 

Retaining terms up to 1/N order we obtain in non- 
centrosymmetric space groups 

1 
P(~'IR~,...,R6)~ ~ exp(--4B cos ~) 

X I o \ v N  ] IoN v/N ] Io~ v/N ], (E.9) 

where 
¢~' ~--- (Pl -- ~2 -- (~3 + ~4' (E. 10) 

= [R1R 3 + R2R 4 + 2R1R2R3R 4 COS ~t]1/2, X5 2 2 2 2 
= [RIR4 + R2R 3 + 2R 1R2R3R 4 cos ~,]1/2, X6 2 2 2 2 

X2= IR---~ (R22 - 1)2+R2R2R 2 
f 

k 

+ RI(R 2 -- 1)R2RaR 4 cos ~'11/2, 

" I  

L is a normalizing parameter which does not depend on 
O', I 0 is the modified Bessel function of order zero 
and R~...,R 6 denote diffraction magnitudes according 
to (E.2). The algebraic form of X 2 and y-+ suggests: 
(a) special quartets such as (E. 10) are on average less 
gathered around zero than general quartets; (b) their 
estimation must be carried out by means of special 
formulae such as (E.4), (E.6), (E.8) or (E.9) rather 
than by general formulae as given by Hauptman (1975) 
and Hauptman & Green (1976). 
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A method is described for determining electronic polarizabilities of ions in doubly refracting ionic crystals 
solely from crystal data. An expression for computing polarizabilities by a least-squares fit can be derived. 
Such a method is used to obtain values for the polarizability of cations for the sodium D line in A3: Na ÷ 1.7, 
K + 11.6, Rb + 19.1, TI + 48.7, Ca 2+ 5.2, Sr 2+ 11.1, Ba 2÷ 23.2, Pb 2÷ 38.3. Evidence is given of decreasing 
polarizability of the 02- ion in aragonite-type carbonates with decreasing cation sizes. 

Introduction 

Tessman, Kahn & Shockley (1953) (TK & S) reported 
a method for evaluating electronic polarizability values 
of ions in ionic crystals from both optical and structural 
data. By applying their method to a great number of 
crystals, they obtained a list of polarizability values of 
ions. TK & S polarizability values differ considerably 
from polarizability values that have been otherwise 
determined (Pauling, 1927; Born & Heisenberg, 1924; 
Mayer & Goeppert-Mayer, 1933; Fajans & Joos, 
1924; Langhoff, 1965; Cohen, 1965, 1966; Lahiri & 
Mukherji, 1967). The cation polarizabilities are 
generally higher, and the anion polarizabilities lower, 
than those obtained by other methods for gaseous ions. 
Efforts have been made to account for these differences 
(Ruffa, 1963; Jain, Shanker & Khandelwal, 1975), as 
well as to develop the TK & S method so as to reduce 
the discrepancies (Pirenne & Kartheuser, 1964). As 
pointed out by Batsanov (1966), the main deficiency of 
the TK & S method stems from neglect of the fact that 
small cations tend to reduce the polarizability of the 
anions. The phenomenon of interacting individual ions, 
as suggested by Pirenne & Kartheuser (1964), is not 
sufficiently explained though it improves the corre- 
spondence between the polarizabilities of ions in ionic 
crystals and the polarizabilities of gaseous ions. 

Since TK & S and Pirenne & Kartheuser (1964) 
restricted themselves to isotropic crystals, they could 

only determine the sum of the polarizabilities from the 
refractive index. They lacked the additional data 
required to evaluate the individual polarizabilities. The 
difficulty of having more adjustable parameters than 
experimental measurements may be handled, at least in 
principle, by extending the TK & S method to doubly 
refracting crystals. The optical properties of a diatomic 
crystal, for example, can be described sufficiently by 
two polarizabilities while there are one, two or three 
indices of refraction measured, depending on sym- 
metry. It has been suggested (Batsanov, 1966) that the 
use of salts with complex oxygen-containing anions 
could be advantageous in determining cation polariz- 
abilities, since the polarizabilities of the complex anions 
alter but little with the cation sizes. With these 
arguments in mind, I decided to examine some sulfates 
and carbonates to obtain values for electronic polariz- 
abilities of ions in doubly refracting crystals. In this 
paper a method is presented for determining the 
polarizabilities of ions in ionic crystals. The resulting 
polarizabilities do not depend as they do in the work of 
TK & S and of Pirenne & Kartheuser (1964) on an 
arbitrary selection of the electronic polarizability of one 
of the ions. Moreover, we shall see that the trend of 
decreasing polarizability of the anions with decreasing 
sizes of the cations is confirmed. The calculations 
remove the discrepancies between the electronic 
polarizabilities of ions in crystals and the values for 
gaseous ions. 


